In his memoirs Albert Speer, Nazi Germany's Minister for Armaments and War Production during the second half of the war, later expressed his conviction that putting Wasserfall on the backburner might have been a war-deciding strategic error:

"To this day, I am convinced that substantial deployment of Wasserfall [anti-aircraft missile] from the spring of 1944 onward, together with an uncompromising use of the jet fighters as air defense interceptors, would have essentially stalled the Allied strategic bombing offensive against our industry. We would have well been able to do that -- after all, we managed to manufacture 900 V2 rockets per month at a later time when resources were already much more limited." Albert Speer, *Erinnerungen*. Propyläen Verlag 1969, p. 375. Indeed, fortifying the Atlantic Wall with the missile might have changed the course of history, by precluding the Yankee-Limey air forces from entering the continent, but...hindsight is always better than foresight, eh!

Perhaps the most menacing "secret weapon" was the Atomic Bomb in prewar WW-II scientific development in Nazi Germany, though by 1943 other Wunderwaffen weapons took over priority such as the V-2 and similar programs; the Hitler cabinet failed to finance two major "saving grace" systems: (1) the Wasserfall anti-aircraft missile; and (2) the atomic bomb, which could have changed the fortunes of German utter defeat!

Men as nations are born free…nor can they be 'contained' for long by the will of others, without eventual consequences, i.e. both fascist Germany and communist Russia offer prime examples.

Located close to the castle (Schloss) in Haigerloch is the Atomkeller Museum. It was here, during World War II, that a group of scientists were working on nuclear fission for the government, with the prospect of being the first to develop atomic weapons. Luckily Hitler didn’t pay much attention to the project, and the scientists were rounded up along with their reactor in April 1945, which was then used as a reference point in the imminent development of the atomic bomb in America. This museum tells the story of the research and experiments here in Haigerloch, with reconstructions of the lab, and charts, models and documents on display.

Overlooking Haigerloch is its castle (Schloss), which sits above the northern side of the river. It is a mix of Renaissance buildings built on the site of the old fortress. The Hohenzollern family owned the complex until recently. It’s now a hotel and conference center, which also organizes occasional art exhibitions. The Rococo Schlosskirche is located nearby, and has an elaborate interior full of frescoes and stuccowork. Also in the grounds of the castle is the Kapf – a belvedere with fantastic views over the town landscape.
Fig. 190. In "Atomic Power," a 1946 March of Time documentary, Einstein and Szilard reenacted their collaboration on the atomic bomb letter to President Roosevelt back in 1939, which launched the American Manhattan Project.

Fig. 191. The reactor was located in a concrete cylinder. During its operation, normal water was between the outer concrete shell and the inner aluminum shell. The normal water was primarily used for cooling purposes. The aluminum container had a diameter of 210 cm and a height of 210 cm, and contained another vessel made of magnesium. The space between the two vessels was filled with a 40 cm layer of graphitic carbon bricks having a total weight of about 10 tons. These rectangular bricks were also placed both at the bottom and in the lid to provide an external shield which prevented the escape of neutrons generated during the fission process. The 664 uranium blocks attached to the lid were then lowered into the inner magnesium vessel. Subsequently, the lid was bolted onto the reactor.
Fig. 192. Reconstructed model reactor in the original hole, Atomkeller Museum, Haigerloch, Germany.

The cave was not blown up by the American soldiers as reported in the postwar annals of WW-II. To the contrary, the laboratory was dismantled and the utilities disconnected, but the cave as such was not destroyed. According to the recollection of older local residents in Haigerloch, the destruction was avoided by a local priest, who persuaded the Americans to refrain from the destruction because an explosion would have also destroyed a medieval church and castle on the cliff above the cave. Incidentally, Werner Heisenberg, the famous director of this wartime research facility, occasionally played Bach on the organ of that church.

Today, there is a small museum in the cave, with original and reconstructed artifacts. Visitors are most impressed by how unbelievably small and primitive the historic laboratory was, compared to the gigantic and elaborate technology of the Manhattan Project. It looks more like a tinker-toy arrangement than something on the forefront of nuclear technology at the time; however, if completed, the Haigerloch laboratory would have led to huge sources of energy and the power for enormous devastation, i.e. the atomic bomb itself.

The French army arrived in Haigerloch on Sunday, 22 April 1945, but took no notice of the underground nuclear lab. The war in Germany officially ended on 8 May 1945.

American-British ALSOS forces arrived a day later, on Monday, 23 April 1945, with the lab as their target, and soon dismantled it. The photograph retrieved from the journal Physics Today shows the dismantling was taken by Samuel Goldsmith, the scientific head of ALSOS, on 24 April 1945. So, this was very near--but before--the official end of the war.

German scientists had removed the uranium cubes and the heavy water from the lab and hidden them before ALSOS arrived. They left only the inner and outer vessels and the graphite block that separated them.

Fig. 193. The German experimental nuclear pile at Haigerloch, being dismantled by British and American Intelligence officers of the ALSOS mission; the director of the first nuclear reactor in Haigerloch was none other than Prof. Werner Heisenberg, the Nobel Prize laureate and author of the Heisenberg Principle in Physics. He was of German not Jewish origin. Photo from David Irving: The Virus House (1967).

The reactor was dismantled in April 1945, and immediately delivered to the Manhattan project, which would test the first nuclear device at Alamogordo, New Mexico on July 16, 1945.
American Col. Boris Pash of ALSOS initially planned to destroy the entire cave. However, local priest Monsignor Marquard Gulde convinced him that the beautiful baroque church on top of the cave would also be destroyed. After ALSOS forces had found and confiscated the heavy water, the uranium, and the inner vessel, Pash agreed to spare the church, possibly because he realized that the lab was too small for any future German nuclear experiments. He ordered a very limited explosion that destroyed the remaining outer vessel within the cave.

The Atomkeller Museum is underground and the original structure is completely preserved—even the hole for the reactor vessel, which now contains a model of the original reactor, as shown in Figure 1. Aside from the damaged outer vessel, shown in Figure 2 as it appears today in the museum, no evidence of the explosion exists. The museum is open to the public. See http://www.haigerloch.de/stadt/kellerenglisch/EKELLER.HTM

The German nuclear energy project was informally known as the Uranverein (Uranium Club) and began just months after the discovery of nuclear fission. The first effort ended in months, but the second effort began under the auspices of the German Army Ordnance Office on the day World War II began, 1 September 1939. The program eventually expanded into the following main efforts: the Uranmaschine (nuclear reactor), uranium and heavy water production, and uranium isotope separation. The zenith of the effort came when it was realized that nuclear fission would not contribute significantly to ending the war. In January 1942, the Army Ordnance Office turned the program over to the Reich Research Council, but continued to fund the program. At this time, the program split up between nine major facilities where the directors dominated the research and set their own development objectives. At that time, the number of scientists working on applied nuclear fission began to diminish, with many applying their talents to more pressing war-time demands such as the moribund Wunderwaffen V-2 program, which cost as much if not more than the entire Manhattan Project in America.

At the end of the war, the major powers allied against Germany went in and exploited German science in general, but specifically their rocketry, U-2 boats, and nuclear industry in terms of personnel, facilities, and materiel, i.e. men and materiel… The transfer of Third Reich's science and technology was much more prevailing in applied science during the war and by the end of it than the two superpowers would ever admit to this very day. Indeed, the wartime rape of German science and brain-drain, especially during the Cold War conflict was so pervasive that neither the Russians nor we Americans ever cared to admit the degree of replication if I may be so bold to underscore, it was so precise and crucial at every step of the high-tech progress and the very reason, I dare say, for this unusual illustrated history of rocketry achieved in the upmanship of the communist environment-East and Protestant Capitalism-West, Marxism vs. Weberianism in the ideological face-off, respectively; the planetary polarization which in many ways still characterizes the international Penal Landscape, terrorized particularly by the Limey-Yankee Anglo-Saxon high-tech power elite hell bent on dominance and privatization of global meridians for political gain within the framework of American Manifest Destiny.

Fig. 194. Dornberger (on the left, with hat) together with von Braun, after their surrender to Allies in Austria, May 1945; during the escape von Braun broke his arm.

Major-General Walter Dornberger (leader of Germany’s V2 rocket program and other projects at the Peenemünde Army Research Center), said later in the United States that the biggest mistake of the Nazi war effort was withdrawing funds from the Wasserfall anti-aircraft missile, which would have stopped dead the RAF and USAF at the Atlantic Wall and
changed the fortunes on the Western front at least. The other, and perhaps the most fortunate event for planetary meridians was the launch of nationwide anti-Semitism in Germany, which launched the quiet exodus of the theoretical physicists and other scientists among the Jewish Diaspora in 1933; short of that the Wehrmacht would have developed the atom bomb way ahead of us Americans, and we would be speaking German today, living in a very different mobilized, racist and militaristic world according to the Book of Goth… Of course, the race is still on in the traditional struggle between East and West, with the Anglo-Saxon cavalcade spearheaded by Pax Americana, imitating Pax Romana, and as flat intellectually, therefore the prospects of Western Civ survival may not be as rosy as many would like to think… In fact, the American system and its imprecise, assuming, and belligerent Jeffersonian democracy is in steep decline.

Two factors which had devastating effects on the German nuclear energy project, then, were the politicization of academia with (a) the deutsche Physik movement on the rise, allowing only ethnic Germans to run the scientific show of R&D, and (b) on the other side of the same coin, it was anti-Semitic and had a bias against theoretical physics of Jewish Diaspora origin, especially in quantum mechanics, deemed Semitic, hence unacceptable to the Aryan myth of racial origin.

THE MIGRATORY TREK...

With the rise of Adolph Hitler to conclusive political power on January 30, 1933, the fortune of high-tech science changed drastically for the worse. On 7 April, the Law for the Restoration of the Professional Civil Service was enacted; this canon, and its subsequent related ordinances, politicized the education system in Germany, which had immediate adverse effects on the physics throughout the national institutes of science and technology. Furthermore, combined with the deutsche Physik movement, the deleterious effects were intensified and prolonged. The consequences to physics in Germany and its subordinate field of nuclear physics were devastating.

An immediate consequence upon passage of the Law for the Restoration of the Professional Civil Service was that it produced both quantitative and qualitative losses to the physics community. Numerically, it has been estimated that a total of 1,145 university professors, in all fields of scientific endeavor, were driven from their posts, which represented about 14% of the higher learning institutional staff members in 1932-1933. Out of 26 German nuclear physicists cited in the literature before 1933, 50% emigrated. Qualitatively, 10 physicists and four chemists who had won or would win the Nobel Prize emigrated from Germany shortly after Hitler came to power, most of them in 1933. These 14 scientists were: Hans Bethe, Felix Bloch, Max Born, Albert Einstein, James Franck, Peter Debye, Dennis Gabor, Fritz Haber, Gerhard Herzberg, Victor Hess, George de Hevesy, Erwin Schrödinger, Otto Stern, and Eugene Wigner. Britain and the USA were often the recipients of the talent which left Germany. The University of Göttingen had 45 dismissals from the staff of 1932-1933, for a loss of 19%. Ironically, eight students, assistants, and colleagues of the Göttingen theoretical physicist Max Born left Europe after Hitler came to power and eventually found work on the Manhattan Project, thus helping the USA development of the atomic bomb; they were Enrico Fermi, James Franck, Maria Goeppert-Mayer, Robert Oppenheimer, Edward Teller, Victor Weisskopf, Eugene Wigner, and John von Neumann. These profiled scientists were mostly of Jewish origin, saw the writing on the all, and got the hell out of racist Nazi infested land in good time.

Max Planck, the father of the quantum, had been right in assessing the consequences of National Socialist policies. In 1933, Planck, as president of the Kaiser Wilhelm Gesellschaft (Kaiser Wilhelm Society), had met with Adolph Hitler. During the meeting, the physicist told Hitler that forcing Jewish scientists to emigrate would mutilate Germany and the benefits of their work would go to foreign countries. Hitler responded with a rant against Jews and Planck could only remain silent and then quietly take his leave. The National Socialist regime would only come around to the same conclusion as Planck in the July 6, 1942 meeting regarding the future agenda of the Reichsforschungs rat (RFR, Reich Research Council), but by then it was too late.
Albert Einstein
Old Grove Road
Peconic, Long Island
August 2nd, 1939

F.D. Roosevelt
President of the United States
White House
Washington, D.C.

Sir:

Some recent work by E. Fermi and L. Szilard, which has been communicated to me in manuscript, leads me to expect that the element uranium may be turned into a new and important source of energy in the immediate future. Certain aspects of the situation which has arisen seem to call for watchfulness and if necessary, quick action on the part of the Administration. I believe therefore that it is my duty to bring to your attention the following facts and recommendations.

In the course of the last four months it has been made probable through the work of Joliot in France as well as Fermi and Szilard in America--that it may be possible to set up a nuclear chain reaction in a large mass of uranium, by which vast amounts of power and large quantities of new radium-like elements would be generated. Now it appears almost certain that this could be achieved in the immediate future.

![Fig. 195. A close-up of the Szilard-Einstein meeting drafting the letter to FDR in 1939.](image)
This new phenomenon would also lead to the construction of bombs, and it is conceivable—though much less certain—that extremely powerful bombs of this type may thus be constructed. A single bomb of this type, carried by boat and exploded in a port, might very well destroy the whole port together with some of the surrounding territory. However, such bombs might very well prove too heavy for transportation by air.

The United States has only very poor ores of uranium in moderate quantities. There is some good ore in Canada and former Czechoslovakia, while the most important source of uranium is in the Belgian Congo.

In view of this situation you may think it desirable to have some permanent contact maintained between the Administration and the group of physicists working on chain reactions in America. One possible way of achieving this might be for you to entrust the task with a person who has your confidence and who could perhaps serve in an unofficial capacity. His task might comprise the following:

a) to approach Government Departments, keep them informed of the further development, and put forward recommendations for Government action, giving particular attention to the problem of securing a supply of uranium ore for the United States.

b) to speed up the experimental work, which is at present being carried on within the limits of the budgets of University laboratories, by providing funds, if such funds be required, through his contacts with private persons who are willing to make contributions for this cause, and perhaps also by obtaining co-operation of industrial laboratories which have necessary equipment.

I understand that Germany has actually stopped the sale of uranium from the Czechoslovakian mines which she has taken over. That she should have taken such early action might perhaps be understood on the ground that the son of the German Under-Secretary of State, von Weizsacker, is attached to the Kaiser-Wilhelm Institute in Berlin, where some of the American work on uranium is now being repeated.

Yours very truly,

Albert Einstein

Unfortunately for the Russians, the Kaiser-Wilhelm-Institut für Physik (KWIP, Kaiser Wilhelm Institute for Physics) had mostly been moved in 1943 and 1944 to Hechingen and its neighboring town of Haigerloch, on the edge of the Black Forest, which eventually became the French occupation zone. This move and a little luck allowed the Americans to take into custody a large number of German scientists associated with nuclear research. The only section of the institute which remained in Berlin was the low-temperature physics section, headed by Ludwig Bewilogua, who was in charge of the exponential uranium pile.

Basically, the atomic age per se started with the above letter to President Roosevelt signed by Albert Einstein. It was a month after Germany invaded Poland to begin World War II, the largest conflict in human history. The letter informed Roosevelt that the element uranium might be turned into a new and important source of energy by a chain reaction. It could also lead to an extremely powerful bomb. The letter warned that Germany might have taken over the uranium mines in Czechoslovakia, and added that the most important uranium source was the Belgian Congo.

The energy released by splitting a uranium atom had been defined by Einstein’ famous 1905 equation E=mc². That and other ideas that transformed science’ understanding of the physical world had made Einstein the No. 1 scientist of the 20th century. So the president took note.
Adolph Hitler’s Germany, for reasons that remain uncertain, failed to realize the destructive value and future threat to follow up with the development of nuclear weapons, especially with the delivery systems such as the V-2 within reach of practical short and medium range reach, but Roosevelt responded to the letter with an affirmative interest be it a modest program to investigate the possibility: a $6,000 advance to Szilard and Fermi.

It led to the top-secret Manhattan Project, and the 1945 devastating and unprecedented destruction of the Japanese cities of Hiroshima and Nagasaki.

But the man who actually conceived of the possibility of a neutron-based chain reaction was hardly as famous as Einstein. He was an Einstein protégé named Leo Szilard, who probably wrote the letter that went to Roosevelt under Einstein’ name.

On December 22, 1938, Hahn and Fritz Strassmann sent a manuscript to *Naturwissenschaften* reporting their radiochemical results, which were the irrefutable proof that the uranium had been split into fragments consisting of lighter elements; simultaneously, they communicated these results to Lise Meitner, who had escaped out of Germany earlier that year and was then in Sweden. Ms. Meitner, and her nephew, the young physicist Otto Robert Frisch, correctly interpreted these results as being nuclear fission, a term coined by Frisch, which subsequently became internationally known. Frisch confirmed this experimentally on January 13, 1939.

In a later appreciation, Meitner wrote:

“The discovery of nuclear fission by Otto Hahn and Fritz Strassmann opened up a new era in human history. It seems to me that what makes the science behind this discovery so remarkable is that it was achieved by purely chemical means.

In an interview on German television (ARD, March 8, 1959), Meitner said:
"Hahn and Strassmann were able to do this by exceptionally good chemistry, fantastically good chemistry, which was way ahead of what anyone else was capable of at that time. The Americans learned to do it later. But at that time, Hahn and Strassmann were really the only ones who could do it. And that was because they were such good chemists. Somehow they really succeeded in using chemistry to demonstrate and prove a physical process."

Fritz Strassmann responded with this clarification:

"Professor Meitner stated that the success could be attributed to chemistry. I have to make a slight correction. Chemistry merely isolated the individual substances; it did not precisely identify them. It took Professor Hahn's method to do this. This is where his achievement lies." See, Lise Meitner, Recollections of Otto Hahn. Stuttgart, 2005.

Near the close and after the end of World War II in Europe, the Russians and the Western powers had programs to foster technology transfer and exploit German technical specialists. For example, the U.S. had Operation Paperclip and the Russians had trophy brigades advancing with their military forces. In the area of atomic technology, the U.S. had Operation Alsos and the Russians had their own version. While operational aspects of the Russian drive for secret weapons were modeled after the trophy brigades, a more refined approach was warranted for the exploitation of German atomic related facilities, intellectual materials, and scientific personnel. This was rectified with a decree in late 1944 and the formation of specialized exploitation teams in early 1945. However, the Russian “Alsos” had broader objectives, which included wholesale relocation of scientific facilities to the Soviet Union, which developed the V-2 into the future Vostok-Sputnik-I space vehicle, tested at Kapustin Yar then launched in 1957 from the Baikanur Space Cosmodrome in Central Asia.

The Norwegian heavy water sabotage was a series of actions taken by Norwegian saboteurs during World War II to prevent the German nuclear energy project from acquiring heavy water which was essential to production of nuclear weapons. The Jewish Diaspora physicists arriving in the United States had blown the whistle; the German nuclear bomb project was doomed from the start!

Between 1942 and 1944 a sequence of sabotage actions by the Norwegian resistance movement, as well as Allied bombing, ensured the destruction of the plant and the loss of the heavy water production. These operations — codenamed “Freshman”, “Grouse” and “Gunnerside” — finally managed to knock the plant out of production in early 1943, basically ending the viable German research in achieving the fission process in splitting the atom into necessary particles achieving the chain reaction process for massive energy release characterizing an atomic explosion.

The raid was later dubbed by the British SOE as the most successful act of sabotage in all of World War II.

Lise Meitner was part of the team that discovered nuclear fission, an achievement for which her colleague Otto Hahn was awarded the Nobel Prize. Meitner is often mentioned as one of the most glaring examples of scientific achievement that was ostensibly overlooked by the Nobel committee. A 1997 Physics Today study concluded that Meitner's omission was "a rare instance in which personal negative opinions apparently led to the exclusion of a deserving scientist" from the Nobel Prize.

Women too have played a role in the development of modern socialist—not to say Nazi—Germany, such as Lise Meitner, Hanna Reitsch, Leni Riefenstahl and many other profiled and professional women... Such were the times... And, hence, I find myself of all people, the critic I'm
of totalitarian regimes, with a keen understanding for such vertical women, truly unique in the history of Western Civ.

Fig. 197. Lise Meitner ca. 1928. Meitner became a Swedish citizen in 1949, but moved to Britain in 1960 and died in Cambridge in 1968, shortly before her 90th birthday. As was her wish, she was buried in the village of Bramley in Hampshire, at St. James parish church, close to her younger brother Walter, who had died in 1964. Her nephew Otto Robert Frisch composed the inscription on her headstone. It reads "Lise Meitner: a physicist who never lost her humanity."

Now we know, Lise should've received the annul Nobel Prize in physics for nurturing—if not discovering—nuclear fission; instead, it was awarded to her to her college Dr. Otto Hahn, the so-called "father of nuclear chemistry", surprisingly at the height of WW-II, (1944), and declared as "fonder of the atomic age" by the Max Planck Society of physicists...

Working with Hahn, Meitner laid the foundation for the discovery of nuclear fission of heavy nuclei. She was the head of the physics department of the Kaiser Wilhelm Institute, until forced to flee from Nazi Germany in 1938, of course, with the pathos of the Anschluss; she was Jewish… In 1966, she along with Hahn and Strassmann were awarded the Enrico Fermi Award. She died on October 27, 1968.

Belatedly, on November 15, 1945 the Royal Swedish Academy of Sciences announced that Hahn had been awarded the annul 1944 Nobel Prize in Chemistry" for his discovery of the fission of heavy atomic nuclei”, but demonstratively enough, apologized for not being able to send the Nazi recipient the telegram. Some historians have documented the history of the discovery of nuclear fission and believe Meitner should have been awarded the Nobel Prize with Hahn. Hahn was still being detained by his Allied captors at Farm Hall Farm Hall, Godmanchester, near Cambridge, England, when the announcement was made, thus, his whereabouts was supposedly unknown, so Meitner wrote a letter of acceptance to the Academy, etc.

Lise Meitner was born into a Jewish family as the third of eight children in Vienna, 2nd district (Leopoldstadt). Her father, Philip Meitner, was one of the first Jewish lawyers in Austria. She was born on November 7, 1878, the year of the Berlin Congress, signaling the formation of modern Europe… She also shortened her name from Elise to Lise. It is not known why she did so. The birth register of Vienna’s Jewish community lists Lise as being born on November 17, 1878 but all other documents list it as November 7, which is what Meitner used. She was the second woman to earn a doctoral degree in physics at the University of Vienna.

In conclusion, had the Third Reich been absent of Aryanism—hence the rise of anti-Semitism—the bomb, and perhaps many other high-tech military systems would have been developed in
time, or ahead of the Allied counterattack, hence the fortunes of World War II, suffice it to say: Yes, they would have been very very different!

by way of a ft. note, Haigerloch *per se* was the host to the Hohenzollern royal family. The **House of Hohenzollern-Haigerloch** is a branch of the senior Swabian branch of the Hohenzollern dynasty, less known however than the Franconian branch which became Burgraves of Nuremberg and later ruled Brandenburg, Prussia and ultimately Germany.

The countship of Hohenzollern-Haigerloch was created in 1576, upon the partition of the countship of Hohenzollern, a fief of the Holy Roman Empire. When the last count of Hohenzollern, Charles I of Hohenzollern (1512-1579) died, the territory was to be divided up between his three sons:

- Eitel Frederick IV of Hohenzollern-Hechingen (1545–1605)
- Charles II of Hohenzollern-Sigmaringen (1547–1606)
- Christoph of Hohenzollern-Haigerloch (1552–1592)

The Counts (Grafen) of Hohenzollern-Haigerloch ruled over a small countship in southwest Germany. Unlike the Hohenzollerns of Brandenburg and Prussia, the Hohenzollern of Haigerloch, and their cousins of Hohenzollern of Hechingen, the senior most branch of the Swabian branch of the House of Hohenzollern, and Hohenzollern of Sigmaringen, remained Roman Catholic.

The principality was incorporated into the principality of Hohenzollern-Sigmaringen between 1630 and 1681. In 1767 it was permanently incorporated into Hohenzollern-Sigmaringen.

Personally, my introduction to Haigerloch *vis a vis* the interest in WW-II secret weapons was made almost a year after completion of the initial manuscript by my friend Uwe Fegert, a native son of Haigerloch, who is now a successful real estate broker in Montenegro, and a neighbor in Old Town – Budva (see, below):

Note: there were 8 international participants that qualified; **Dubai** participated with two "blue" color boats, took the first place, second place was **Qatar** with some Sheikh behind the wheel… The US Ambassador **Roderick Moore** gave an exclusive live TV interview, speaking in almost perfect Montenegrin, and called it the most important event for the nation-state profile, second to none, perhaps with the exception of regained millennial independence on May 19, 2008. The event was attended by VIPs from all over the continent and afar. . . Of course, way in the background to the right is the famous **St. Stefan** Island; the left development in the background is the exclusive Zavala Peninsula under construction by the main sponsor of the boating event, **MIRAX** Corporation of Moscow, Russia. **Amani Resorts** of Singapore, owners the Sail Hotel in Dubai, highest and most expensive hotel in the world, leased the St. Stefan-Milocher complex for 35 years. . . Yes, Montenegro is now coming into its own in the community of nations.
Fig. 198. With my friend and neighbor, Uwe Fegert from Haigerloch, Germany, a real estate agency owner in Budva, May 25, 2008. On this day Montenegro hosted its first international power boat race, putting it in class with Monaco, the other profiled host of the sport on the continent.

Nazi Atomic Bomb, chap. X, excerpted from, A Secret Weapon, pp 100-111, from a 190-pages of text, with 314 illustrations of this graphic historical Treatise on the significance of the V-1 & V-2 German wartime missiles for development of postwar ICBM rocketry and space vehicles generally… Copyright©27 August 2007 by Prof. Paul S. Cutter – Europe.
Fig. 313. The author (PSC, above) taking a break along the balmy Adriatic Sea, contemplating the various illustrative aspects of the “Secret Weapon” Treatise, at Rezhevichi, Montenegro, early June 2007. After a year in Russia (2006-07), working on the Cold War 3-volume translation it was time to relax and ponder older, unsolved topics of recent world history.

Copyright©2007, by Prof. Paul S. Cutter – Europe.